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1. Preliminary Considerations. For the sake of convenience we begin with a 
summary of facts pertaining to M-dimensional vectors. These facts will be needed 
in the subsequent developments: 

A set of M real quantities ul, U2, * *, m are said to represent an M-dimen- 
sional vector, to be denoted by u. The uh's will be referred to as the components of 
the vector u. 

For two M-dimensional vectors u and v, the scalar product (u, v) will be de- 
fined by 

(i\ (U. V) (Ul V + U2 2 + UM VM) = Vh 

If (u, v) = 0 the vectors u and v are said to be orthogonal. In particular 

(2) (UU) 
2 

The norm of the vector u to be denoted by ui U 11 is defined by 

1 M A1/*2 
(3) II U|3 E= Uh } 

if 

(4) = up 
it can be readily shown that 

(5) lull 11 : llup 
This is the Minkowski inequality. 

Let now v = Au where A is a symmetric square matrix of order Ml. We shall 
prove that if the eigenvalues of the matrix A are known to be numerically smaller 
than unity, then 

lvii S lull. 
Indeed let 

M 

(6) u = EawT 
r-el 

where the war's are the eigenvectors corresponding to the eigenvalues Xr. From 

(7) Aw, = Xrwr 

it is readily seen that 

(8) 1! u1= VWn= a2 
r-l 
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provided that the w,'s are normalized so that 

(9) (Wr7,w) = 1 

Clearly then 
U U 

v = Au = a a1rAw, E ar cXWr 
r -1 real 

whence 

r-1 

and therefore 

(10) iiAu ? ull 

since the X7's were assumed to be numerically smaller than unity. 
The inequality (10) may he generalized in two important ways. Clearly 

ii A2u ii _ Au 

and therefore 

11 A2U 11 _ U 

and more generally 

(11) iiA'u ? huh 

provided the eigenivalues of A are numerically smaller than unity. Consider now 

vN = AnA,-, ... A2A1u 

where the A,'s are symmetric matrices whose eigenvalues are numerically smaller 
than unity. We have in succession 

VI vlii = Ai A1u uI < ii u ii 
1 V{ = A2V1 __ vi -lu II 

so that ultimately 

(12) ll AIn;An-l ' * 2Aiu 11 ' !u 11. 

It should be pointed out that the inequalities (11) and (12) are equally valid 
for nondefective matrices* whose eigenvalues are numerically smaller than unity. 

Consider now the explicit difference analog 

(13) T -,k+= (1 - "r) Th,k + r(Th-l,k + TAhl.k) 

of the differential equation 

(13*) PC =K 2 

* A square matrix of order 21! is nondefective when it has 31 distinct eigenvectors. 
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where TA,k = T(hAx, k.At) and r = (KA! /(pc(Ax)2 where K, p and c are assumed 
constant. For the sake of concreteness assume that we are dealing with the problem 
of heat conduction in a slab whose bounding planes x = 0 and x = a are kept at 
0TC. Equation (13) may then be written in the compact form 

(14) Tk+t = ATk 

where Tk and Tk+? are the Alf-dimensional vectors whose components are the tem- 
peratures at times kAt and (k + 1)At at the mesh-points hAx, h = 1, 2, 3, * , 31 
where (M + 1 )Ax = a and A is the tridiagonal Ml X M! matrix whose elements on 
the principal diagonal are = 1 - 2r and whose elements off the principal diagonal 
are = +r. 

Starting with the initial temperature vector To equation (14) yields in suc- 
cession 

I T1 = ATo 

II T2 = AT1 
(15) 

Tn = AT,-i 

If the computations involved in the successive steps of (15) could be carried 
out to an infinite number of decimal places the vectors Tk thus generated would be 
the true solutions of the difference equation (14). In actual practice the computa- 
tions are carried to some fixed number of decimal places and the question arises: 
what is the error propagated as a result of rounding-off the values of the products 
in (13) at the various steps in the process of computation? 

For the sake of concreteness assume that the initial temperatures are exact 
and that the computations are carried to p decimal places. Then, since formula 
(13) involves two multiplications, each one of which involves a round-off error 
ranging from -4 X 10-P to 2 X lO1P. it is clear that the first step in the sequence 
of operations (15) does not yield the true vector T, = ATo but the approximate 
vector T1* = ATo + &1 where 51 is the vector whose components represent the sum 
of the round-off errors corresponding to the two multiplications in (13). In entirely 
similar manner it is seen that the second step ill the sequence of operations (15) 
yields the vector T2* = AT,* + 62 = A(ATo + 61) + v = A2To + A 51 + A. 

Proceeding in this manner it is readily seen that when n successive steps of ('15 
have been carried out, we have generated the vector 

(16) T_* = A4'To + A,, n-1 + An-2 + + A51 + n 

where in general 5p is the error vector whose components represent the sum of the 
round-off errors in the arithmetical operations leading from the components of 

T,-1 to those of T, . 
Clearly T * - A'To = En is the round-off error vector corresponding to the 

nth time step. Thus 

(17) E A f14 + An-&1 + v.. 1 + br 

In view of (5) and (11) the last equation yields 

(18) ||E 1! - n 1 ?1 i + l - 1 + *2 + P1 -1 + i 

since the eigenvalues of A are known to be numerically smaller than unity. 
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Let d denote an upper bound of the components of all vectors &q. It is then 
readily seen that 

(19) 5* 

whence 

(20) En ;5 nb*. 

Since 

lEn .={ hE Enh} 

it is clear that the maximum value of any of its components EW, is obtained by 
assuming that all but one of the components are equal to zero. Calling the maximum 
value of the component E,,* the last inequality yields 

(21) En*_ <fM*. 

The second member of (21) is an upper bound of the round-off errors in the 
values of the temperatures generated by the explicit scheme (13). To illustrate, 
assume that l - 49 and n = 100. Since (13) involves two multiplications so that 
5* = 2. X 10-P = 10 it follows that E* _'0 10OV49 X 10-P = 7 X 10-('2). 

Thus on the basis of (21) the values of the temperatures for t = lOOAt computed 
by the difference scheme (13) may be incorrect by not more than 7 units in the 
(p - 2)th place. 

For the explicit scheme under consideration, a somewhat lower upper bound 
than that given by (21) may he obtained as follows: 

If Eh denotes the absolute value of the error in Thk and Ek* denotes the largest 
of the values of Ehk (for h = 1, 2, 3, *. Al) then, since r < i and therefore 
1 - 2r 2 0, the difference equation (13) yields: 

Ehk+l < (1 - 2r)Ek* + r(Elk* + Ek*) + 2 X 10' 

= Ek* + 10'= Ek* + 5. 

Since we assumed that the initial temperatures are exact so that Eo* 0, the last 
inequality yields 

(21*) En* S nS*. 

Thus the above elementary analysis has yielded a lower upper bound of the round- 
off errors than the previous more elegant analysis. It should be pointed out, how- 
ever, that the virtue of the analysis which culminated in (21) lies in the fact that 
nVM5* is also the upper bound of the round-off errors in the implicit difference 
scheme 

(23) Th.,l+, = Th.k + 
r 

(Th..,k+l - 2Th&k+i + Th+1,k+i + Th-l...k - 2Thk + Th+l,k) 

h=1, 2, 3,** * .. 

Indeed (23) may be written in the form 

(23*) ATk+l = BTk = (4 - A)Tk 
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whence 

(24) Tk+l = A-'BT = (4A' - I)Tk = CTk (say) 

where A is the Ml X M tridiagonal matrix whose elements on the principal diagonal 
are = 2 + 2r and whose elements off the principal diagonal are = -r and where I 
is the IMl X M unit matrix. Since the determination of C involves the inversion of 
the matrix A, it may be easily shown that the counterpart of (16) is 

(16*) T * = C'T0 + c^-l + cn-2;2 + + Cin-I + &,, 

where now 6, is the error vector whose components represent the aggregate of the 
errorsarising both from the replacement of C = 4A' - I byC* = 4A-1* - I where 
A-'* is an inexact inverse of A and from the rounding-off of all products and quo- 
tients involved, to the number of places carried in the computation. Since the 
eigenvalues of C are numerically smaller than unity (see for instance, the writer's 
monograph on "The operator approach to stability and convergence") the develop- 
ments which previously led from (16) to (20) and (21) apply with the sole excep- 
tion that now 5* refers to the vectors in (16*). It should be clear of course that 
in the present case the value of 5* depends on the particular scheme for sovring 
the system of equations (23) for the unknown temperatures Th,k+l, or, what 
amounts to the same thing, the particular scheme for inverting the matrix A in 
(23*) To illustrate, we shall derive the expression for 6* for the case where the 
system (23) is solved by the method of iteration. We shall also quote the results 
of an earlier RAD* report dealing with the analysis of errors for a different method 
of solution of the system (23). 

2. The Method of Iteration. If T(2) denotes the qth approximation to the solu- 
tion of (23), then the (q + 1)st approximation is given by 

hk+ = Thk + _ (h-lk+l hk+- T + h+lk+l + Thlk -2Thk + Th+l,k) 

whence 

r (q) ~ 1- 
T~+) r (T2h.l^'-l - 2( -1,k+l + T~lq+) 

+ +) (Thl,k + Th+l,k) + + Th,k. 

As before let Ek* denote the largest of the absolute errors in the values of Th,k and 
let alq) denote the largest of the absolute errors in the qth approximation to the 
Th,k+l's. Then the last equation yields 

(26) E(Th~.A,?1)) < r *2a + r 2Ek* +IlrIEk* +35 - 2(1 + r) 2(1 + r) 1 + r 

where 35 = 3 I X l0' is the sum of the absolute values of the maximum round- 
off errors corresponding to the three multiplications in (25). 

* AVCO Advanced Research and Development Division 
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For r < 1, (26) yields 

E(T k+ 1 ) + r + + r Ek* + 3 = pa q( + oEk* + 35 (say) 

whence 

(27) a(q+l) 5. Pa(q) + oEk* + 35 

where aX(q+' is the largest of the absolute errors in the (q + 1)th approximation 
to the Thk+I's. Applying the last inequality to p = 1, 2, 3, *- - 1 we get 

a(2) ? pa2l) + cEk* + 35 

a(') jpa(2) + ME,* + 35 

(N) (N-i) 

whence 

a < (+ p + p2 + *+ pxr2) (sEk* + 3a) + p a-1 (1) 

E * ____E 1k+t E *+ -Ek* + 3(1 + r). 

1-p 1 1P - r 1 +r 

1 + r 1 + r 

In the last inequality N is the minimum number of iterations such that succes- 
sive values of T(Pk) X and '(P+) agree to within a preassigned tolerance. Clearly 
a(I) represents the maximum absolute round-off errors in the values of Th.k+? . We 
have thus reached the conclusion 

(28) E?il ? Ek* + 3(1 + r)&. 

From (28) it follows that for the method of iteration under consideration 
5* = 3(1 + r)5. 

In the above analysis we assumed that r < 1. If r > 1, a = (2r - 1)/(1 + r) 
and the counterpart of (28) is 

(28*) Ek+1 _ (2r - 1)Ek* + 3(1 + r)6. 

Comparison between (28) and ('28*) shows clearly that although the choice ' > 1 

seems to imply larger errors, the expression for 5* is formally the same as for the 
case r : 1, namely, 3(1 + r)5. 

We now turn to an alternative method for the solution of the system. The 
method, of unknown origin, consists of the following algorithm: if (23*) is rewritten 
in the form 

(29) Ay=b 
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then the components of y are given by the following sequence of operations 

r2 
Ok = 2 + 2r- - k = 1,2,.3, ^ M; = 2 + 2r 

ftk-1 
r 

7k = -- 

(30) 

Zb = .1 (bk + rZk-i) =2 + 2r 

yk = Zk - Yk Zk+i YM = ZM . 

The analysis of the errors involved in the above algorithm is given in the writer's 
RAD report entitled "On the Propagation of the Errors in the Inversion of Certain 
Tridiagonal Matrices." The conclusion reached in this report is that if the compo- 
nents of b are assumed exact, an upper bound of the errors in the values of the 
components of y is given by the inequality 

(31) E*(y) < As r{ a. [ + ?+ rZ1 + + 9 
r + 1 

where 0* = I + r + V'VV2 and B, Z and Y are the largest absolute values of 
the bk's, ZkS' and yk'S and 5 = 2 X 10'. A somewhat larger upper bound is obtained 
if Z and Y are replaced by upperbounds of the I Zk I's and I Yk l's which may be 
easily obtained from the above algorithm. We are led to 

E*(y) < _ r{ r- _ il + (d - r)(*2 - r2)I 

+ 
BO* 

) ( + A +1}. 

Either one of the second members of the above inequalities plays the role of the 
quantity 5* in (21). It will be noted that since b is the vector BTk so that 

bhk = (2 - 2r) Th,k + r(Th.l,k + Th+l,k) 

it follows that 

bk* < (2- 2r)Tk* + 2rTk* = 2Tk* forr 5 1 

be* < (2r - 2)Tk* + 2rTk* = (r - 2)Tk* for r T I 

where bk* and Tk* are upper bounds of bhk and Th,k for fixed k respectively. If b* 
and T* denote upper bounds of bh,k and Th,k for all values of k, then 

(32) b*<2T* forr<1 

(32*) b* > (4r - 2)T* for r > 1. 

Since the temperature was assumed to vanish for x = 0 and x = a, it is clear that 
T* is merely the maximum of the initial temperature function f(x). 

The previous developments are based on the assumption that the temperature 
vanishes on the boundaries of the slab. We shall now briefly discuss the modifica- 
tions which must be made for other types of boundary conditions. 
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Assume first that the boundary conditions are 

(33) T(O, t) = 0(t) 

IT(a, t) = i(t). 

If in the difference equation (13) we put h = 1 and h = M, we get 

(34) Tl.k+l = rTok + (1- 2r)Tl,k + rT2.k = r4o(kAt) + (1 - 2r)Tl,k + rT2,k 

Q TM kill- reTM~k + (1 - 2r) TMk + rTM4,I.k 

= rTM.l,k + (1- 2r)TM,k + rol(kAt). 

In view of (34) and (35) it can be readily seen that the counterpart of the matrix- 
vector equation (14) is 

(36) Tk+l = ATk + U* 

where 

(37) UIAk = roo(kAt), 

(38) UMk = roj(kt), 

and all other components of u are zero. 
If in (36) we put k = O, 1, 2, * * , n - Iwe ultimately get 

(39) Tn = AnT0 + An-'uo + An-2u + ... Aun.2 + un-1. 

The analysis of propagation of errors is entirely similar to the analysis which 
led to equation (16). Its counterpart is 

T* = A To + An-lu0 + At 2u1 + ... + Aun_2 + un-1 

(16*) + A n-1 + A-262 + ... + Ak-1 + Id 

whence, in view of (39) 

(16) En = A '-18 + An2v + *-- + A&n-l + fn. 

Thus, the expression of the error vector En is identical with that previously 
derived for the case where the temperature vanishes on the boundaries of the slab. 
We conclude that the upper bound of the round-off error is once more given by (21). 
The same conclusion can obviously be drawn also for the implicit difference scheme 
(23); the reasoning is identical with that given before. It should be pointed out, 
however, that the quantity T* in equations (32) is the largest of the maxima of the 
functions f(x), co(t) and 01 (t). 
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